Modelling for Understanding

Mark Bentley

Heriot-Watt University & TRACS Training

... with contributions from Ed Stephens, Tom Buckle & Rona Hutton

One view

Field life cycle

Life cycle uncertainty

Green Field Full-field questions, little data

Brown Field Local questions, much data

Heterogeneity – Col de la Cayolle

Heterogeneity – Col de la Cayolle

Heterogeneity – we've been here before

Stephen, Clarke & Gardiner 2001

Heterogeneity – and the work goes on

Onyenanu, Hampson, Fitch, Jackson, 2019

We tend to build big full-field models

Why?

... with a thank you to Phil England

The ensemble !

aev.

ENTER P

DE LE PERE

LHET

Not always an improvement

BREP

Model choices

A base-case history-matched static-dynamic 3D model pair

Analytical models only (type wells, decline curves)

Low-mid-high versions of the above

Multiple models – statistical (more stochastic) – the ensemble

Multiple models – conceptual (more deterministic) - scenarios

2D maps and Monte-Carlo models

How did this happen?

Because in the face of choice, we tend to default to the standard workflow

This talk question the workflow

A refinement

`Truth Models'

A different approach

'Modelling for Understanding'

The scale gap

My, what a big simulator you've got...

'Truth Models'

Resolve at the scale of the data

Model at the scale of the question

Understand one heterogeneous bed

'Truth modelling'

Heterogeneity – *if you can sketch it …*

MPS realisation (internal channel character added)

If you can sketch it

Model elements from multi-point statistics (MPS)

Porosity (frac)

Truth models – building understanding

Viscous, gravity and capillary

Construction of the second

Understanding 1– impact of capillary forces

Water drawn up displaces oil down

Additional recovery from nominally 'non-net' material

Understanding 2 – value of knowing wettability

WW: WBT later by ~ 10%, RF higher by ~ 3% Stronger spontaneous imbibition into upper units OW: WBT earlier by ~ 20%, RF lower by ~ 10% Bypass of lower perm material within lower unit

Understanding 3 – locating remaining oil

Saturation behind the flood front Explore sim grid cell X=5 flowing ~90% water-cut

Model	Swi	W/cut	Krw	Kro	Soil
Ultra fine grid	30.7%	87%	0.1305	0.0188	34%
Sim grid X=5	30.6%	93%	0.0992	0.0076	34%

Questions and decisions ...

Modelling through time – not nimble

time

Modelling through time - less complex, more efficient

field life cycle →

Maybe modelling to understand the question is more important than trying to model up a complex solution ...