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One view
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Life cycle uncertainty
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Brown Field
Green Field Local questions, much data

Full-field questions, little data
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Col de la Cayolle
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Heterogeneity — Col de la Cayolle

Amalgamation surface 100m
—— Outcrop termination




Heterogeneity — we've been here before

—e— Lower Thick-Bedded Unit
Kilbaha Bay
Upper West Kilcloher
—— Bridges of Ross Channel (x-axis)
—e— Bridges of Ross Channel (y-axis)
—— Bridges of Ross Channel (x-axis)
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—=— Tabernas Sandy Fan (x-axis)
—=— Tabernas Sandy Fan (y-axis)
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Heterogeneity — and the work goes on
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We tend to build big full-field models
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Why?

We have a
complex
problem

We build a
complex
model







Model choices

A base-case history-matched static-dynamic 3D model pair *
Analytical models only (type wells, decline curves)

Low-mid-high versions of the above *
Multiple models — statistical (more stochastic) — the ensemble *
Multiple models — conceptual (more deterministic) - scenarios

2D maps and Monte-Carlo models

Full field models ’* Mechanistic ‘box models’ 2D cross-sectional
models
Sector models REV models (multi-scale)
No model
Well models Spreadsheet




How did this happen?

Because in the
face of choice, we
tend to default to

the standard
workflow
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This talk .... question the workflow

A refinement

‘Truth Models’

A different approach

‘Modelling for Understanding’




The scale gap

Core Plug 0.03m x 0.012m radius

25m x 25m x 0.5m

Static Model Cell size
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My, what a big simulator you’ve got...




Resolve at the
scale of the

LY

Model at the
scale of the
question




Understand one heterogeneous bed




‘Truth modelling’

2D cross-sectional model
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ﬁ IO Core Plug )
Typical offshore well spacing Y - >

~5Ccm
Cell resolution close to the
scale of the input data (SCAL) Grid Cell
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3.2 million
cells (the full field equivalent would be a few trillion cells)




Heterogeneity - if you can sketch it ...
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If you can sketch it ....

Model elements from multi-point statistics (MPS)

— Cross-Bedded Sand

-— Channel Sand l

— Laminated Sand

Conglomerate |
Fine Sand I

— Homogeneous Sand

— Ripple Sand
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— Silt Nodules
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Truth models - building understanding

Viscous & gravity

Viscous force only
wi =

Viscous, gravity and capillary

wi PW




Understanding 1- impact of capillary forces
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Understanding 2 - value of knowing wettability

WW: WBT later by ~ 10%, OW: WBT earlier by ~ 20%,
RF higher by ~ 3% RF lower by ~ 10%
Stronger spontaneous Bypass of lower perm
imbibition into upper units material within lower unit

Water wetting (Iw 0.8)

Water Wet

Oil wetting (Iw 0.2)

Oil Wet
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Understanding 3 - locating remaining oil

Saturation behind the flood front
Explore sim grid cell X=5 flowing ~90% water-cut

Ultra fine grid . 0.1305 0.0188

Sim grid X=5 30.6% 93% 0.0992 0.0076

Oil saturation (So)
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Questions and decisions ...
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Modelling through time - not nimble
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Modelling through time - less complex, more efficient
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