Models for Production vs. Storage

Mark Bentley & Tim Wynn TRACS & Heriot-Watt

with Phil Ringrose (NTNU), Gillian Pickup & Eric MacKay (Heriot Watt)

DEVEX June 2021

"We need a model for CO₂ injection"

So what's missing?

Models for Storage vs. Production

Models for Production vs. Storage **STUDY VOLUME**

It's bigger

The 'Storage Complex'

EU CCS Directive (EC 2009; annex 1):

"Sufficient data shall be accumulated to construct a volumetric and 3-D static earth model for the storage site and storage complex, including the caprock, and the surrounding area, including the hydraulically connected areas"

Storage Volume

Optimising CO₂ storage in geological formations; a case study offshore Scotland

> CO₂MultiStore project September 2015

<image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image>

360 MT CO_2 over 35 years

Multi-store model for geomechanics

... large scale dynamic models

... with most of the action happening away from the drill centres

The requirement for multi-scale modelling

Models for Production vs. Storage

Sideburns

Cellular modeling – different properties

Upscaled from logs with core calibration (or derive from seismic attributes, but will be dynamic)

Geomechanics – modelled vertical uplift

From White Rose K43 Technical Report 2016

Geomechanics – extras needed for modelling storage

Accurate measurements of in-situ stress, elastic moduli & rock strength

Model appropriate timesteps – not too fine, not too coarse

Two way coupling.

Update properties (perm, elastic moduli ...) with each time step

Explicit induced fracture models, thermal effects – especially near wellbore and/or short timeframes. Sector models are our friend

Not generally required for production

... or maybe they were

Models for Production vs. Storage

FLUIDS

Supercritical

Fluids

Fluids – mass rather than volume (so we talk tonnes)

What's a 1000 tonnes of CO_2 ?

At standard conditions (ISA) (1.013 Bar & 15°C)

- > 1 m³ of CO₂ has a mass of 1.87 kg
- > 1bscf = $28.32 \times 10^6 \text{ m}^3$
- Mass of 1Bscf = 52959.5 tonnes
- Mass of 1MMscf = 52.96 tonnes
- So a single well injecting 20 MMscf per day is injecting about 1000 tonne of CO₂ per day

Fluids

Truth models for complex multiphase flow

Ed Stephens, TRACS

CO2 for CCUS

Wang, Pickup, Sorbie, Mackay & Skauge, 2021

Injection of a low viscosity fluid (CO₂) into a higher viscosity fluid

Mobility ratio indicates unstable displacement

Inherently leads to viscous-fingering behaviour

"... to a much greater extent than we are familiar with in oil reservoirs as the viscosity contrast is more marked ... "

" ... a much greater extent ... "

Models for Production vs. Storage

PHYSICS & CHEMISTRY

More thought required

Years

Capillary Effects

Capillary Effects

Capillary forces (interfacial tension) play an important role in trapping of CO_2 :

- Both at the caprock interface (structural trapping)
- And as residual CO₂ (as the plume migrates upwards)

Chemistry – dissolution

Critical time (t_c) for onset of convection and the characteristic wavelength (λ_c) are estimated to be in the range of:

```
10 days < t_c < 2000 Years; 0.3 m < \lambda_c < 200 m Riaz et al., 2006
```


Density-driven flow in CO_2 storage in saline aquifer, Steve Furnival

Density-driven flow in CO_2 storage in saline aquifer, Pau et al, 2010.

Injected CO₂ remobilises residual methane

This changes the mass of the plume: 50% methane mixture increases plume mobility by 90%

Mobile plume reduces storage capacity

Gas density varies within the plume red = CO_2 -rich green = methane rich)

Saaed Ghanbari, Eric Mackay, Niklas Heinemann, Juan Alcalde, Alan James, Michael Allen, 2021

Which gas ends up where?

1000 years later

- Bouyancy takes over
- Remobilised methane ends up at the trap margin more quickly than forecast
- Overall storage capacity is reduced

Chemistry – impact of impurities

Impact on ...

 CO_2 phase properties, flow assurance, geochemical reactions, storage characteristics AND ... mixing to enhance CO_2 storage

Eric Mackay's Heriot-Watt research group

Models for Production vs. Storage

LOST HETEROGENEITY

Need it back

In production, 'heterolithics' are almost universally a disadvantage

In storage, 'heterolithics' are a storage opportunity, due to capillary trapping capacity

Lost heterogeneity

Impact of heterogeneity on storage efficiency (Bunter case)

Williams, Jin, Benthama, Pickup, Hannis, Mackay, 2013

My, what a big simulator you've got...

Traditional upscaling issues - unavoidable

Min Jin 2015 Heriot-Watt

Increasing heterogeneity means ...

Increased injection pressures

Decreased injection rates

Decreased storativity

Increased capillary trapping

Increased need to understand the small-scale

Other types of models

X (mm)

When the really small-scale matters (effective properties, capillary effects)

Models for Production vs. Storage

MONITORING

Job for life

(c) CO₂ plume simulation

Models for Production vs. Storage

COMMUNICATION

Nuclear

Nuclear

Nuclear

EU CCS Directive (EC 2009; annex 1):

"Sufficient data shall be accumulated to construct a volumetric and threedimensional static (3-D)-earth model for the storage site and storage complex, including the caprock, and the surrounding area, including the hydraulically connected areas"

'Leakage' =

"... any release of CO₂ from the storage complex'

'Significant irregularity' =

"... any irregularity in the injection or storage operations or in the condition of the storage complex itself, which implies the risk of a leakage or risk to the environment or human health.'

Production

Model the field

Focus geomechanics on reservoir & caprock

We approximate the small-scale and simplify physics

We can be isothermal

Aquifer sometimes important (but can be simplified)

Balance of forces: "viscous forces dominate" in water injection – can often get away with simplification

Multi-decade simulations

Multi-decade monitoring

CCS

We need the whole storage complex

Geomechanics also required for over- and underburden

We need to capture capillary effects and fine heterogeneity (small models)

Super-critical fluids! We shouldn't be isothermal

Aquifer always important (and multiscale effects apply)

Balance of forces: viscous during injection, gravity post-injection, capillary before and after for trapping

Multi-millennia simulations

Multi-millennia monitoring

And for us modellers

We need the whole storage complex (large models) – long term geophysics

Get a geomechanical friend, ideally with sidebur(de)ns

The fluids are sensitive to a wide range of length scales (Flora plus)

Critical permeability contrast	3 orders 2 orders 1 orde		order	1/2 order ?		
Fluid fill	dry gas	wet gas	light oil	heavy oil	aquifer	residual gas
Production mechanism	depletion (no aquifer)	depletion (with aquifer)	water injection	gas/steam injection	CO ₂ injection	

We are sensitive finescale heterogeneity – and it's on our side; embrace the REV

Models for production vs. storage

Handy references

<u>www.sccs.org.uk</u> Lots of useful links on their website CCS published material

2 Springer

Phil's 2020 brief on the Equinor project experiences – notes from the people who are actually doing this Our res mod design text - 2nd edition 2021, rewritten for the energy transition with a chapter on modelling for storage

